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The coexistence between two stable steady states, referred to as bistability, is generally associated with a
phenomenon of hysteresis in which a system jumps back and forth between the two branches of stable states
for different, critical values of some control parameter, corresponding to two limit points. We focus here on
the cases where the transitions between the two branches of stable steady states become irreversible when
one of the limit points becomes inaccessible or goes to infinity; we refer to these two cases as irreversible
transitions of type 1 or 2, respectively. In order to study in detail the conditions in which such irreversible
transitions between multiple steady states occur in chemical systems, we analyze two models based on reversible
chemical steps. The first model, due to Schlo¨gl, has long been studied as a simple prototype for bistability.
This model is shown to admit irreversible transitions of type 1 as one of the limit points associated with
bistability moves into a physically inaccessible region of negative values of a control parameter. A second,
original model is proposed, to illustrate the case of irreversible transitions of type 2 in which a limit point
goes to infinity. Irreversible transitions of type 1 can also occur in this model, as a function of other control
parameters. In both models irreversible transitions take place under nonequilibrium conditions. The analysis
indicates what reaction steps need to remain reversible in the models in order to preserve the irreversible
transitions.

Introduction

The coexistence between two stable steady states, referred
to as bistability, has long been known to occur far from
equilibrium in chemical systems governed by appropriate
nonlinear kinetic laws. The phenomenon is illustrated by a large
number of experimental and theoretical studies in chemical1-9

and biochemical10-18systems. When a parameterλ is continu-
ously increased, it is often observed (see Figure 1A) that the
system jumps from one branch (say branch 1) of stable steady
states to another branch (denoted 2) at a limit point associated
with a critical valueλ2; when the parameter is then reduced,
the system jumps back to branch 1 at a different limit point
associated with a valueλ1 of the control parameter. Such a
phenomenon ofhysteresisis one of the most conspicuous
properties generally associated with bistability.
Bistability can, however, occur in the absence of hysteresis.

Theoretical studies of biochemical and combustion systems have
shown that one of the limit points bounding the domain of
bistability may not be accessible to the system.19-26 In such
cases (illustrated by panels B and C in Figure 1), the system
can jump from one branch of steady states to the other but
cannot undergo the reverse transition when the control parameter
is varied back and forth across the bistability domain. The
transition is said to be irreversible.20 Either the limit point to
the left moves into a region of inaccessible negative values
(Figure 1B), or the limit point to the right goes to infinity (Figure
1C), and thus becomes an infinite limit point (ILP). The two
situations will be referred to below as irreversible transitions
of type 1 and 2, respectively. The symmetrical situation may
also occur: the limit point to the right may remain finite and
positive but may nevertheless go into a physically inaccessible
region, and the left limit point may go to-∞.

It may also occur that the two limit points are out of the
system’s reach; then the branches of stable steady states are
not connected (see Figure 1D), so that the system will not be
capable of switching in any direction between these branches
upon continuously varying the control parameter.27,28 Another
case of nonconnected branches is that of isolas (Figure 1F)
which originate from “mushrooms” in which two hysteresis
loops are present (Figure 1E); such isolas are formed when two
limit points (denotedλ2 andλ3 in Figure 1E) coalesce. In this
case, in contrast to the situation shown in Figure 1D, the system
can jump irreversibly from the stable branch of the isola to the
other branch of stable steady states. Isolas have been found
both experimentally and theoretically in chemical systems,9 and
in biochemical models.18 We shall not consider here irreversible
transitions associated with isolas and shall restrict our investiga-
tion to the case of irreversible transitions schematized in Figure
1, B and C.
The inaccessibility of one or two limit points in conditions

where bistability occurs has been investigated experimentally
in several biochemical reaction systems.28-32 The interest of
the phenomenon lies in its possible physiological significance.
Irreversible transitions between multiple steady states could
indeed play a role in memory and differentiation.
Theoretical studies of the loss of one or two limit points in

bistable systems have been devoted so far to models governed
at least partly by irreversible kinetic laws.19-27 In order to see
whether the phenomenon is not an artifact produced by
approximations in the derivation of the evolution equations, we
analyze the conditions in which bistability occurs without
hysteresis in simple theoretical models for chemical systems
based on fully reversible kinetic steps, for which kinetic
equations are derived without resorting to any quasi-steady-
state assumption.
Our aim is to analyze theoretical models that illustrate the

different types of irreversible transition observed when one of
the two limit points bounding a domain of bistability ceases to
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be accessible to the system or disappears by going to infinity.
Two models are studied to this end; the first is the well-known
model for bistability proposed by Schlo¨gl,1-3 for which we show
how one of the limit points can become associated with a
negative value of a control parameter for which only positive
values correspond to physically acceptable situations -the control
parameter represents, for example, the concentration of a
chemical reactant or a kinetic constant. This situation corre-
sponds to the irreversible transition of type 1 illustrated in Figure
1B. A second, original model is constructed to illustrate the
case where one of the limit points goes to infinity, which
corresponds to the irreversible transition shown in Figure 1C.
In both models we determine the equilibrium state and show
that it is located outside the region of bistability.
In a subsequent paper we shall examine a model for which

the two branches of stable steady states cease to be connected.
The latter situation, illustrated in Figure 1D, is encountered when
one limit point moves to an inaccessible domain (e.g. negative
values) of the control parameter while the second limit point
either goes into another domain of inaccessible values or toward
infinity.

Irreversible Transitions of Type 1 in the Schlo1gl Model

Bistability. The model of Schlo¨gl1-3,5,7,9provides a simple
prototype for bistability. Its very simplicity allows a detailed

analysis of the conditions in which multiple steady states occur.
The model describes the conversion of the initial reactant A to
B via an intermediate X which can catalyze its own production.
The system is open to infinite reservoirs of reactants A and B,
so that the concentrations of both species are kept constant
within the system:

To analyze the conditions for irreversible transitions, it is
necessary to recall the salient features of the model.1-3,5 The
rate equation for the single variableX is

This equation admits an equilibrium solution, provided the
conditions ensuring detailed balance of both reactions are
fulfilled:

Thus, at equilibrium

and

Whenever the ratio (A/B) differs from the above value, the
system operates under nonequilibrium conditions.
The steady-state solutions obey the equation

where

Equation 6 admits, for certain values of the parametersa, b,
andk, three solutions, two of which are stable and one unstable
(Figure 2). At equilibrium, condition 4 yields the following
relation:

Using eq 8, it is possible to show that multiple steady states
cannot be observed at equilibrium.5 Indeed relation 8 cannot
be satisfied together with condition 9 which ensures the
existence of three real roots for eq 6:

where

The same conclusion can also be reached by expressinga as a

Figure 1. Different modes of bistability (see text). (A) Bistability with
hysteresis. The two limit points are located inλ1, λ2. Panels B-D
illustrate various cases of bistability without hysteresis. (B) Irreversible
transition of type 1: the left limit point has moved toward an
inaccessible domain. (C) Irreversible transition of type 2: the right
limit point has moved toward infinity. (D) Nonconnected branches of
steady states: the left limit point has become inaccessible, while the
right limit point has gone to infinity. (E) “Mushroom” with two
hysteresis loops which, upon merging, produce an isola (F) associated
with irreversible transitions. Here, as in subsequent figures, dashed lines
indicate unstable steady states.
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function ofb andk at equilibrium by means of eq 8 and factoring
out the equilibrium solution. Then eq 6 can be written as

The only physically acceptable solution admitted by this
equation, and hence by eq 6, is the equilibrium solution (5).
Irreversible Transitions of Type 1. To show the occurrence

of irreversible transitions in this model, instead of studying the
multivalued function yieldingX as a function of parameterb, it
is convenient to study the monovalued function

obtained from eq 6. Because the functionf(X) has a polynomial
form, it does not admit any vertical asymptote. Vertical
asymptotes obtained whenb is plotted as a function ofX are a
necessary (but not sufficient) condition for the occurrence of
irreversible transitions of type 2 in which a limit point goes to
infinity when X is plotted as a function ofb. Irreversible
transitions of this type are therefore not allowed in the fully
reversible Schlo¨gl model (the effect of considering irreversible
steps is discussed further below). The polynomial form of
f(X) nevertheless allows the occurrence of irreversible transitions
of type 1 in this model. As shown by Figure 1B, such transitions
occur when a limit point enters into the region of negative values
of b (which plays here the role of parameterλ). In this case it
will not be possible to connect the steady states of the upper
and lower branches ofX only by reversibly changing parameter
b. To observe this situation the functionf(X) has to cross three
times the positive part of theX-axis; i.e.,f(X) must have three
nonnegative solutions forb ) 0. We can readily obtain the
conditions in which such a situation occurs in eq 11. Indeed,
one solution is alwaysX ) 0, and the other two solutions are

The latter solutions are real provided thata > (4k)1/2, and
are then always positive. Thus if the conditiona g (4k)1/2 is
fulfilled, we have an irreversible transition of type 1. This
occurs in Figure 3, established fork ) 1, whena g 2.
Observing bistability as a function ofb implies the existence

of both a maximum and a minimum inb as a function ofX.

Studying the zeros of the first derivative off(X), equal to 3X2

- 2aX + k, we find that the condition for bistability is

Thus, as a function ofb, we have monostability if 0< a <
(3k)1/2; bistability with reversible transitions (accompanied by
hysteresis) if (3k)1/2 < a < (4k)1/2, and bistability without
hysteresis (irreversible transition of type 1) ifa g (4k)1/2.

Bistability with Irreversible Transition of Type 2

Building up a Model with an Infinite Limit Point. We
now look for a reversible chemical model which, upon variation
of some control parameter, shows a type of irreversible transition
that is qualitatively different from the one that occurs in the
Schlögl model. There we observed the shifting of one limit
point into a physically forbidden region of negative values of
the control parameter. The other possibility, to be investigated
below, is that the irreversible transition originates from the
shifting of a limit point to infinity.
We consider, as in the Schlo¨gl model, the inverse function

P ) h(X) obtained from the steady-state equations, whereP is
a control parameter of the model (in the present case,P will
denote the concentration of a chemical species) andX is a
steady-state solution. To have a limit point going to infinity,
the curve yieldingP as a function ofX must have at least two
vertical asymptotes for positiveX values. Thush(X)must be a
rational function with at least two vertical asymptotes in the
regionX > 0. Writing h(X) in the form

we see thatg(X) must have at least two positive roots (the
situation of a single positive root ofg(X) must be avoided;
indeed,h(X)would have a unique vertical asymptote in which
it would also change sign, andPwould be positive on one side
of the asymptote and negative on the other side). The evolution
equation yielding expression 14 at steady state will be

To have at least two strictly positive roots,g(X)must be at least
of the second order inX. The simplest assumption is to consider

Figure 2. Domain of bistability in the Schlo¨gl model. The domain
(hatched area) is obtained as a function of parametersa andb using
the program AUTO34 applied to eq 6 fork ) 1 (parameters are
expressed in arbitrary concentration and time units). The dashed line
indicates the unique equilibrium solution, which lies outside the domain
of bistability. The equilibrium solution corresponds to eq 8.

Figure 3. Bistability with or without hysteresis in the Schlo¨gl model.
For a ) 2.3, the left limit point becomes inaccessible, giving rise to
bistability without hysteresis, with an irreversible transition of type 1.
For a ) 1.9 anda ) 1.5 the curves correspond, respectively, to
bistability with hysteresis and monostability. The curves are obtained
by solving numerically the steady-state eq 6 as a function ofb for k )
1. On each curve, the equilibrium point (black dot), corresponding to
b ) a (see eq 8), lies on the upper branch of steady states.
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that P is involved as a catalyst in a trimolecular, autocatalytic
step producing X:

To avoid having a trivial solution ofX, we need also to assume
that P is involved in the transformation of X into another
substance B:

The corresponding rate equation for X will be

Therefore, in eq 15,

A rapid examination ofg(X) leads to the conclusion that it
cannot admit two positive solutions, according to the rule of
Descartes for the coefficients: the term inX2 will always be
negative and the zero-order term is always positive, so that
g(X) admits at most a single positive real root.
Therefore,g(X)must be a polynomial of at least order 3, and

this means that, with only one concentration variableX (we
assume that the system is open in such a manner that all other
concentrationsA, P, andB are kept constant), the autocatalytic
reaction must be quadrimolecular:

The corresponding rate equation is

In this caseg(X) is a third-order polynomial inX:

According to the rule of Descartes, this polynomial has either
one or three real positive roots. Thush(X)given by eq 14 either
has only one asymptote or three vertical asymptotes. In the
first case, the system has either one stable steady state, or two
stable steady states with hysteresis. In the second case, the
multiplicity of vertical asymptotes gives rise to bistability with
irreversible transitions of type 2.
To have the full expression forh(X)we still need to define

its numeratorf(X). Becauseg(X)sand hence the steady-state
equation forXsis already of the third degree inX, which is a
necessary condition for bistability, the degree off(X) is not
crucial for the occurrence of bistability or irreversible transitions.
As seen from eq 15,f(X) is a polynomial which is at least of
first order inX and corresponds to reactions in which P is not
involved. We choose the simplest case of a unimolecular
reaction:

The full rate equation becomes

andh(X) is

We could carry on the detailed analysis of the model for the
above mechanism including a tetramolecular step. For reasons
of chemical plausibility, however, we prefer to demonstrate
irreversible transitions of type 2 when we decompose the
quadrimolecular step into a trimolecular step plus a bimolecular
reaction and introduce to this end a second variable,Z. We
will show in the following that in this way we retain the required
analytic form forh(X) at steady state.
The total reaction scheme for the model therefore is

The variables areX andZ; A, B, C, andP are concentrations
which are controllable parameters. P can be thought of as an
enzyme which transforms X into B, via the formation of
complex Z; the latter, when complexed with a second molecule
of X, can transform A into X.
For convenience, we shall refer to this model in the following

as theinfinite limit point (ILP) model, even if under different
conditions it can also admit irreversible transitions of type 1,
as shown further below.
Kinetic Equations. The rate equations governing the time

evolution of the concentration variables in the model corre-
sponding to reactions 27 are

At equilibrium we have the following relations between the
concentrations and the kinetic constants:

To simplify the analytical treatment, it is useful to rescale the
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concentrations and time:

The system of eq 28 takes the form

where

The equilibrium relations (29) thus take the form

To obtain the steady-state solutions of system (31) we have
to solve the following equations:

These equations are obviously satisfied at equilibrium where
relations 32 hold. Expressinga and c as a function ofb
according to eq 32 and factoring out the equilibrium solution,
we rewrite eq 33 as:

SinceC2 is always larger than unity, as shown by eq 31, we
see that at equilibrium the system does not admit any other
physically acceptable steady state. The phenomenon of bista-
bility demonstrated below therefore occurs only far from
thermodynamic equilibrium.
Irreversible Transitions of Type 2. For simplicity we

consider, without loss of generality, the case where all kinetic
constants are equal to unity. ThenC1 ) 1 andC2 ) 2 and the
steady-state equations (33) become

As a function ofa andb, for different values ofp, the region
of bistability Γ(p,c) is determined by the conditions ensuring
the existence of three real positive roots to eq 36:

whereq1 and r1 are given by the expressions

The domain of bistability is shown in Figure 4 for different
values ofp.
To determine the conditions in which bistability is ac-

companied by irreversible transitions of type 2, we expressp
as a function ofx:

This function will have three vertical asymptotes if its third-
degree denominator has three positive real roots. This will occur
when

where

The two conditions 39 are satisfied in the region shown in Figure
5 as a function ofa andb. In this domain (referred to below
as TI) we have irreversible transitions of type 2. This region is
included as a subset in the union of all the regionsΓ(p,c) of
bistability (see Figure 4) obtained under the variation ofp and
c:

Furthermore, it can be proved that

Indeed, conditions 37 become, in the limit ofpf ∞, equivalent

Figure 4. Domain of bistability in the infinite limit point (ILP) model.
The domain (white region) was determined as a function of parameters
a andb, for three values ofp, using the program AUTO34 applied to
eq 36. Parameterc is equal to 2. In this and subsequent figures, all
parameters and variables are dimensionless.
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to conditions 39:

Therefore, forp f ∞, the fulfillment of conditions 37 for
the existence of bistability ensures that the phenomenon is
associated with an irreversible transition of type 2.
To further visualize the region of bistability with irreversible

transitions of type 2, we show in Figure 6 the root(s) denoted
di (i ) 1-3) of the third-degree denominator of eq 38 as a
function of b for different values ofa. The system admits
irreversible transitions when three solutions are present for a
given value ofb. This occurs whenb is less than a critical
value (see Figure 6 fora> 2) or comprised in a range bounded
by two critical values (see for example the curve fora ) 1.8).
Depending on the value of parameterc relative to the values

of the three roots (d1, d2, d3) of the denominator of eq 38, we
obtain different possible shapes ofp as a function ofx, as
illustrated in Figure 7A-D in which d1 ) 0.126,d2 ) 0.559,
d3 ) 1.135 fora ) 1.9 andb ) 0.08. Shown successively in

this figure are the casesd3 < c (Figure 7A),d2 < c< d3 (Figure
7B), d1 < c < d2 (Figure 7C),c < d1 (Figure 7D). In Figure
8A-D, we show the corresponding variation of the steady-state
concentration ofx (denotedxs) as a function ofp. The four
cases considered illustrate the different sorts of irreversible
transition of type 2 observed in this system.
By decreasingc continuously from a sufficiently large initial

value, we pass through the intermediate situations in whichc
becomes equal to one of the three rootsd3, d2, andd1. The
bifurcation diagrams which correspond to these special situations
are shown in Figure 9A-C. Particularly interesting is the case
shown in Figure 9B forc ) d2; this case corresponds to a
pitchfork bifurcation. Therefore, the situations intermediate
between those shown in Figures 8, B and C, can be seen as
perturbations of the pitchfork bifurcation, in terms of the

Figure 5. Domain of existence of three vertical asymptotes for function
38 (the existence of three such asymptotes ensures the existence of an
infinite limit point). The domain was determined as a function of
parametersa andb using conditions 39.

Figure 6. Roots of the denominator of function 38 determined as a
function of parametersa and b by means of the program AUTO34

applied to the denominator of eq 38. Each root corresponds to a vertical
asymptote for function 38. The existence of three vertical asymptotes
ensures the occurrence of an irreversible transition of type 2.

lim
pf∞

p+ 2
pb

) 1
b

lim
pf∞

(q1
3 + r1

2) ) (q2
3 + r2

2) (40)

Figure 7. Different cases illustrating how functionp given by eq 38
varies as a function ofx, depending on the value of parameterc relative
to the three rootsd1, d2, andd3 of the denominator of the same function.
The value ofc is 1.8, 0.8, 0.3, and 0.06 for panels A to D, respectively.
Moreover, a ) 1.9 and b ) 0.08. The corresponding modes of
irreversible transition of type 2 are shown in Figure 8.

Figure 8. Different modes of irreversible transition of type 2 in the
ILP model. The diagrams show the steady-state level ofx as a function
of parameterp in the different cases illustrated in Figure 7. The
equilibrium state cannot be reached here since conditions 32 cannot
be satisfied, given thata * b.
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parameterε ) c - d2. This is illustrated in Figure 10 where
the pitchfork bifurcation obtained forε ) 0 is shown (Figure
10B), together with the bifurcation diagrams obtained for slightly
positive (Figure 10A) or negative (Figure 10C) values ofε.
Transitions between Monostability and Different Modes

of Bistability. So far we have studied the behavior of the model
as a function of parameterc for values ofa andb such that
functionp(x) given by eq 38 admits three vertical asymptotes.
This situation corresponds to bistability without hysteresis, with
an irreversible transition of type 2. It is possible to vary one
parameter of the model (e.g.a or b) to pass from such a situation
to a situation in which the denominator ofp(x) in eq 38 admits
a single positive real root, which corresponds to monostability,
or bistability with hysteresis. Such transitions are illustrated
in Figure 11A-D (established fora ) 1.9 andc ) 1.2) where,
in agreement with the results of Figure 6 (see curve fora )
1.9) on the number of roots of the denominator ofp(x) in eq
38, we successively observe as a function ofb monostability,
bistability with hysteresis, bistability without hysteresis, and
monostability again as parameterb is increased progressively.
The successive transformations of the bifurcation diagram

as a function ofb shown in Figure 11 are not general, however,

as they depend also on the values of parametersa andc. For
the valuea ) 4, for example, the denominator of eq 38 has
three real positive roots for sufficiently small values ofb, in
contrast to the situation observed fora) 1.9 for which a single
root exists at low values ofb (see Figure 6): fora ) 4, upon
increasingb, we start from situation of Figure 11C (bistability
with irreversible transition of type 2) and can only pass to the
situation of Figure 11D (monostability), but we cannot have
bistability with hysteresis, which can occur fora) 1.9 as shown
in Figure 11B.
The influence of parameterc has been discussed above for

values ofa andb such thatp(x)admits three vertical asymptotes
(see Figures 7-9). For other values of the latter parameters,
the value ofcwill affect the possibility to pass from bistability
with hysteresis to monostability. Thus forc ) 2, it can be
shown that the system cannot pass from bistability with
hysteresis as in Figure 11B to monostability as in Figure 11A
as a function ofp by lowering b: the system can show
monostability over the whole range ofp values only for high
values ofb.
Irreversible Transitions of Type 1 in the ILP Model. So

far we have investigated the occurrence of bistability with
irreversible transitions of type 2 in the infinite limit point model.

Figure 9. Steady-state level ofx as a function ofpwhenc is equal to
one of the three roots (d1, d2, d3) of the denominator of function 38.
The case shown in (B) corresponds to a pitchfork bifurcation. The
situation considered is that of Figure 7.

Figure 10. Perturbation of the pitchfork bifurcation obtained forc )
d2 (B), whenc is slightly larger (A) or less (C) thand2. The situation
is that of Figure 7.
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Irreversible transitions of type 1 can also occur in this model,
when the lower limit value of a control parameter goes into an
inaccessible domain of negative values.
To observe irreversible transitions of this type as a function

of parameterp would require that three real positive values of
x correspond to the valuep) 0 in eq 38 forp(x). We see from
that equation that this is never possible, because a single positive
value (x ) c) corresponds top ) 0. Irreversible transitions of
type 1 can nevertheless occur as a function of other parameters
of the model. To see this, let us expressa, b, andc as a function
of x at steady state, from eq 36:

Again, to observe the phenomenon as a function of one of
these three parameters we need to obtain three real positive roots
of x when the corresponding parameter becomes nil. Applica-
tion of the rule of Descartes shows that this will never be
possible as a function of parametera. In contrast, the possibility
of an irreversible transition of type 1 exists as a function of
both parametersb and c. The occurrence of irreversible
transitions with a negative limit point is illustrated as a function
of b andc in Figures12 and 13, respectively. The position of
the left limit point in Figure 12 can be brought from negative
to positive values by changing parametera, while a similar effect
can be brought about by variation of parameterp in Figure 13.
It is not possible to combine in this model the two types of

irreversible transition. Equations 41a-41c show indeed that
none of the curves yieldinga or b or c as a function ofx can
admit three distinct asymptotes.
Effect of Irreversible Chemical Steps. Having analyzed

the occurrence of irreversible transitions in the two models when
all the chemical steps are reversible, the question arises as to
what the behavior of the systems becomes when all or part of

the reverse kinetic constants are taken equal to zero. In the
Schlögl model, irreversible transitions of type 1 disappear when
k-1 ) 0 since the right-hand part of eq 2 is then only of the
second degree. Whenk-2 ) 0, the irreversible transition of
type 1 is not observed. The lower steady state is then always
null and the right limit point goes to infinity as a function of
parameterawhich depends onk-1 (see eqs 6 and 7). Thus, for
this particular value ofk-2, the middle (unstable) steady-state
tends toward the lower, null steady state asa increases, giving
rise to a particular transition of type 2.
In the ILP model, examination of eq 28 shows that in order

to have the possibility of bistable behavior, it is necessary that
k-3 be different from zero: otherwise the resulting steady-state
equation forX will be of the second order. Thus when all the
chemical steps are irreversible, the model does not retain the
nonlinearities in the kinetic equations necessary to display
bistability. If all the reverse kinetic constants, exceptk-3, are
null, we can observe bistability and irreversible transitions of
type 2, but one of the stable steady-state solutions is always
zero (here, in contrast to what is observed for the Schlo¨gl model,

Figure 11. Steady-state level ofx as a function of parameterp in the
ILP model for increasing values ofb. The diagrams show the passage
from monostability (A) to bistability with (B) or without (C) hysteresis,
and finally to monostability (D). The situation in C corresponds to an
irreversible transition of type 2. Parameter values area) 1.9,c) 1.2.

a)
px3 + pbx2 + (p+ 2)x- (pb+ 2c)

p(x2 + xb)
(41a)

b)
px3 - pax2 + (p+ 2)x- 2c

p(-x2 + ax+ 1)
(41b)

c) [px3 + p(b- a)x2 + (p+ 2- pab)x- pb]/2 (41c)

Figure 12. Bistability with or without hysteresis in the ILP model, as
a function of parameterb. An irreversible transition of type 1 is shown
for a ) 2. Parameter values arec ) 2, p ) 100. The equilibrium state
for a ) 2 corresponds tob ) 2 since at equilibriuma ) b ) c ) x
(see eqs 32); thus the equilibrium point (shown by a black dot in the
inset) lies on the upper branch of steady states on this curve. The
equilibrium state cannot be shown fora ) 1.9 sincea * c.

Figure 13. Bistability with or without hysteresis in the ILP model, as
a function of parameterc.The curve forp) 100 shows an irreversible
transition of type 1. Parameter values area ) 2, b ) 0.02. In contrast
to the situation in Figure 12, the equilibrium point cannot be shown
here sincea * b (see legend to Figure 12).
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the middle branch of steady states possesses an asymptote which
differs from the abscissa axis). In fact, we have the same
situation if onlyk-1 andk-4, or k-2 andk-4 are equal to zero
with k-3 * 0. In all the other cases we have bistability and
irreversible transitions of type 2 with all the steady-state
solutions different from zero.
For the occurrence of irreversible transitions of type 1, it is

again required thatk-3 be different from zero, for the same
reasons explained above. Moreover, the parametersb or cwill
be present in the kinetic eqs 28 ifk-2 andk-4 are different from
zero, respectively. Whenk-2 andk-3 are different from zero,
the ILP model still exhibits, as a function ofb, irreversible
transitions of type 1, but one steady state solution is always
nil. When k-4 and k-3 are different from zero, we have
irreversible transitions of type 1 as a function ofc, with the
low branch of steady-state passing throughx ) 0 in c ) 0.

Discussion

Bistability is often associated with the capability of a system
to switch back and forth between two distinct branches of stable
steady states upon the reversible variation of a control parameter
in a range bounded by two limit points. Hysteresis results from
the fact that the values of the control parameter at which the
transitions occur, which correspond to the two limit points, are
different. Here we focused on the situations in which one of
the limit points becomes inaccessible to the system. In such
cases, the system is capable of jumping from one branch of
steady states to the other, without being able to undergo the
reverse transition. The unique transition between the two
branches of stable steady states has thus become irreversible.20

Such a phenomenon could be of importance for the control of
chemical reactors as well as for the dynamics of biological
systems (see below). Several models showing such irreversible
transitions have been proposed,19-26 but the kinetics of these
systems is of a nonpolynomial nature and is based on the
assumption of irreversible chemical steps. Therefore, the
question arises as to whether irreversible transitions may occur
in chemical systems consisting of a sequence of fully reversible
steps described by polynomial kinetics.
In order to clarify the conditions in which irreversible

transitions occur when one of the limit points of a bistable
chemical system disappears, we have examined two theoretical
models admitting a coexistence between two stable steady states.
The two models are based on a sequence of reversible chemical
reactions. This analysis leads us to suggest a classification of
irreversible transitions between two types, depending on whether
a limit point goes into a region of finite values not accessible
to the system (irreversible transition of type 1) or to infinity
(irreversible transition of type 2). In the first model, proposed
by Schlögl,1-3,5 we showed that irreversible transitions of type
1 but not of type 2 are possible. In the second model,
constructed to illustrate the phenomenon and referred to as ILP
(infinite limit point) model, irreversible transitions of type 2
but also of type 1 are obtained.
To display an irreversible transition of type 1, the model of

Schlögl, which contains two steps, including an autocatalytic
trimolecular one, was not modified. This model was previously
studied for bistability associated with hysteresis. We showed
here that bistability without hysteresis can occur in this model
and obtained the conditions on the parameters for which one
of the limit points goes into a region of negative values
corresponding to a physically inaccessible range of the control
parameters.
The second model is made up of four steps. It also contains

a trimolecular step for the autocatalytic production of an
intermediate X, as well as the formation of a bimolecular

complex containing X, which is also involved in the trimolecular
step. The coupling of these two processes further reinforces
the global autocatalytic nature of this system. We showed that
in this model one of the two limit points can go to infinity. The
other type of irreversible transition due to the passage of a limit
point into a range of finite but inaccessible values can also be
observed. Thus this model can display a wide range of behavior,
including monostability, bistability with hysteresis, and bista-
bility without hysteresis due to the occurrence of an irreversible
transition of either type 1 or 2.
In both models thermodynamic equilibrium corresponds to a

point located outside the domain of bistability. Thus the
phenomenon of irreversible transitions is possible in fully
reversible chemical systems, under nonequilibrium conditions.
The question arises as to how the system can evolve to
equilibrium if it starts from a branch of steady states (apparently)
separated from the branch containing the equilibrium state by
the absence of a limit point that would allow the transition
between the two branches as a function of a control parameter.
In other words, the equilibrium state should be connected to
any steady state by continuously varying the control para-
meter(s). When the equilibrium and steady-state branches are
disconnected due to an irreversible transition of type 1 or 2,
such a continuous passage requires the concomitant variation
of more than one control parameter.
To our knowledge, the present study is the first to address

the occurrence of irreversible transitions in fully reversible
chemical reaction models. This allows us not only to determine
the location of the equilibrium state with respect to the range
in which such transitions occur, but it also permits us to
determine the effect of the reverse reactions on the occurrence
of the phenomenon. As indicated in the preceding section,
neglecting some of the reverse steps in the two models
suppresses the irreversible transitions, while neglecting some
other reverse steps has no effect in this regard. The present
study appears to validate the results obtained in models based
on partially irreversible kinetic schemes.19-27 We have not
investigated whether the quasi-steady-state hypotheses which
were often made in these studies to reduce the number of
variables influence the occurrence of irreversible transitions. The
fact that the phenomenon is obtained here in the absence of
such hypotheses nevertheless indicates that it is probably not a
result of this simplying procedure.
Irreversible transitions between multiple steady states are not

limited to chemical reaction systems. Thus an “incomplete
hysteresis phenomenon” associated with an irreversible transition
of type 2 corresponding to an infinite limit point has been
described in a two-parameter, one-dimensional map obtained
from a nonlinear model proposed for an optical bistable device.33

To demonstrate experimentally irreversible transitions of type
1 as a function of a particular control parameterλ, a transition
from one branch of steady state to another branch should first
be demonstrated when the value ofλ exceeds (goes below) a
critical value. Then, the value ofλ should be decreased
(increased). If the system returns to the original branch of steady
states at a different critical value ofλ a hysteresis cycle is
obtained (see Figure 1A). However, if the value of the control
parameter cannot be changed any further for some physical
reason (for example, positivity of rate constants or chemical
concentrations) before the transition has occurred, then the
system is blocked in that branch of steady states and an
irreversible transition of type 1 is demonstrated (Figure 1B).
However, the original state can be recovered by changing the
value of some other control parameter of the system or by
applying a suprathreshold perturbation in the concentration of
a chemical intermediate (e.g. the addition of a certain amount
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of variablex in Figure 1B). The threshold corresponds to the
intermediate, unstable steady state at the given value ofλ.
A similar procedure should be followed to reveal the

occurrence of an irreversible transition of type 2. Here, it is
impossible to reach one of the limit points because it has gone
to infinity (Figure 1C). To distinguish such a situation from a
true hysteresis cycle with a limit point far away (but not
displaced to infinity), one could determine the critical perturba-
tion needed to induce the passage from the lower to the upper
branch of steady states. While in the case of a full hysteresis
cycle this threshold should decrease as parameterλ approaches
the limit point (see Figure 1A), in the case of an irreversible
transition of type 2 the threshold should reach a finite, constant
value or should increase asλ increases, because the middle and
lower branches of steady states possess distinct asymptotes
(Figure 1C).
Bistability phenomena are by now a well-known manifesta-

tion of nonlinear kinetics in chemical systems. Hysteresis
behavior associated with bistability has been described in a
number of theoretical or experimental studies, both in chemical1-9

and biochemical10-18 systems. Less attention has been devoted
to the occurrence of irreversible transitions resulting in bistability
without hysteresis. The phenomenon has been studied in detail
by Gray et al.26 in combustion systems, and by Hervagault et
al.24,25,27-31 who focused on cyclical enzymatic systems gov-
erned by (partially) irreversible kinetic laws and investigated
experimentally the disappearance of limit points in such bistable
systems. Also based on partially irreversible kinetics, other
theoretical models of biological interest which display irrevers-
ible transitions have been proposed for genetic regulation,19

membrane permeability changes coupled to biochemical reac-
tions,20 a glycolytic enzyme system,21,32 the isocitrate dehydro-
genase reaction,35 autophosphorylation of protein kinases,22

cellular dynamics involving receptor desensitization (Schepers,
H.; Goldbeter, A., manuscript in preparation), and immune
response.23 It therefore appears that the phenomenon of
bistability without hysteresis might be of deep physiological
significance in view of its potential role in differentiation and
in the storage of information in a variety of biological contexts.
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