J. Phys. Chem. A997,101,93679376 9367

Bistability without Hysteresis in Chemical Reaction Systems: A Theoretical Analysis of
Irreversible Transitions between Multiple Steady States
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The coexistence between two stable steady states, referred to as bistability, is generally associated with a
phenomenon of hysteresis in which a system jumps back and forth between the two branches of stable states
for different, critical values of some control parameter, corresponding to two limit points. We focus here on
the cases where the transitions between the two branches of stable steady states become irreversible when
one of the limit points becomes inaccessible or goes to infinity; we refer to these two cases as irreversible
transitions of type 1 or 2, respectively. In order to study in detail the conditions in which such irreversible
transitions between multiple steady states occur in chemical systems, we analyze two models based on reversible
chemical steps. The first model, due to Sghdas long been studied as a simple prototype for bistability.

This model is shown to admit irreversible transitions of type 1 as one of the limit points associated with
bistability moves into a physically inaccessible region of negative values of a control parameter. A second,
original model is proposed, to illustrate the case of irreversible transitions of type 2 in which a limit point
goes to infinity. Irreversible transitions of type 1 can also occur in this model, as a function of other control
parameters. In both models irreversible transitions take place under nonequilibrium conditions. The analysis
indicates what reaction steps need to remain reversible in the models in order to preserve the irreversible
transitions.

Introduction It may also occur that the two limit points are out of the
. system’s reach; then the branches of stable steady states are
The coexistence between two stable steady states, referreq, ot connected (see Figure 1D), so that the system will not be
to as bistability, has long been known to occur far from canaple of switching in any direction between these branches

equilibrium in chemical systems governed by appropriate ,on continuously varying the control paraméfe®® Another
nonlinear kinetic laws. The phenomenon is illustrated by a large case of nonconnected branches is that of isolas (Figure 1F)
number of experimental and theoretical studies in chefigal |, hich originate from “mushrooms” in which two hysteresis

and biochemicaf~*®systems. When a parameteis continu- loops are present (Figure 1E); such isolas are formed when two
ously increased, it is often observed (see Figure 1A) that the |im;t points (denotedi, and/s in Figure 1E) coalesce. In this

system jumps from one branch (say branch 1) of stable steadycase, in contrast to the situation shown in Figure 1D, the system
states to another branch (denoted 2) at a limit point associatedcap, jump irreversibly from the stable branch of the isola to the
with a critical valued,; when the parameter is then reduced, qoiher branch of stable steady states. Isolas have been found
the system jumps back to branch 1 at a different limit point 4tk experimentally and theoretically in chemical systéausd
associated with a valug, of the control parameter. Such a iy pigchemical model# We shall not consider here irreversible
phenomenon ohysteresisis one of the most conspicuous  ansitions associated with isolas and shall restrict our investiga-

properties generally associated with bistability. tion to the case of irreversible transitions schematized in Figure
Bistability can, however, occur in the absence of hysteresis. 1, B and C.

Theoretical studies of biochemical and combustion systems have T inaccessibility of one or two limit points in conditions
shown that one of the limit points bounding the domain of

bistability may not be accessible to the systén#® In such in several biochemical reaction systefs32 The interest of

cases (illustrated by panels B and C in Figure 1), the system o hhenomenon lies in its possible physiological significance.

can jump from one branch of steady states to the other buteyersiple transitions between multiple steady states could
cannot undergo the reverse transition when the control paramete, yoeq play a role in memory and differentiation.

is varied back and forth across the bistability domain. The
transition is said to be irreversibt@. Either the limit point to

the left moves into a region of inaccessible negative values
(Figure 1B), or the limit point to the right goes to infinity (Figure
1C), and thus becomes an infinite limit point (ILP). The two
situations will be referred to below as irreversible transitions
of type 1 and 2, respectively. The symmetrical situation may
also occur: the limit point to the right may remain finite and
positive but may nevertheless go into a physically inaccessible
region, and the left limit point may go teo.

where bistability occurs has been investigated experimentally

Theoretical studies of the loss of one or two limit points in
bistable systems have been devoted so far to models governed
at least partly by irreversible kinetic la#%.2” In order to see
whether the phenomenon is not an artifact produced by
approximations in the derivation of the evolution equations, we
analyze the conditions in which bistability occurs without
hysteresis in simple theoretical models for chemical systems
based on fully reversible kinetic steps, for which kinetic
equations are derived without resorting to any quasi-steady-
state assumption.
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A B analysis of the conditions in which multiple steady states occur.
- - The model describes the conversion of the initial reactant A to
/:f‘ //, B via an intermediate X which can catalyze its own production.
[ + ¢ The system is open to infinite reservoirs of reactants A and B,
K el el o so that the concentrations of both species are kept constant
v within the system:
_:,/ ‘J’/ ky
‘ A +2X==3X (1a)
—1
Al A Y% K,
c o X oy B (1b)
/ /’— To analyze the conditions for irreversible transitions, it is
- necessary to recall the salient features of the mbdél. The
K P e L rate equation for the single variabteis
¥
L B kX A — X+ kB @)
M This equation admits an equilibrium solution, provided the
conditions ensuring detailed balance of both reactions are
E F fulfilled:
/f_\ m K AX = k_ X
>g’ » T + st l‘\ 7n kZX = k*ZB (3)
) & Voo Thus, at equilibrium
! | ]
(A) = koako, 4)
Blea  kik,

Moo M A 4

Figure 1. Different modes of bistability (see text). (A) Bistability with 5

hysteresis. The two limit points are located An A.. Panels B-D

illustrate various cases of bistability without hysteresis. (B) Irreversible X, = (K_,/k))B (5)
transition of type 1: the left limit point has moved toward an eq -

inaccessible domain. (C) Irreversible transition of type 2: the right . .

limit point has moved toward infinity. (D) Nonconnected branches of ~ Whenever the ratioA/B) differs from the above value, the
steady states: the left limit point has become inaccessible, while the System operates under nonequilibrium conditions.

right limit point has gone to infinity. (E) “Mushroom” with two The steady-state solutions obey the equation
hysteresis loops which, upon merging, produce an isola (F) associated
with irreversible transitions. Here, as in subsequent figures, dashed lines X3 _ aX2 +KkX—b=0 (6)

indicate unstable steady states.

be accessible to the system or disappears by going to infinity. where

Two models are studied to this end,; the first is the well-known a=kAk ;, b=k Bk , k=kJk , @
model for bistability proposed by Sclgipt—2 for which we show - e -

how one of the limit points can become associated with a Equation 6 admits, for certain values of the parameters,
negative value of a control parameter for which only positive anqk; three solutions, two of which are stable and one unstable

values correspond to physically acceptable situations -the control gigyre 2). At equilibrium, condition 4 yields the following
parameter represents, for example, the concentration of ayg|ation:

chemical reactant or a kinetic constant. This situation corre-

sponds to the irreversible transition of type 1 illustrated in Figure (b/a)eq: k (8)

1B. A second, original model is constructed to illustrate the

case where one of the limit points goes to infinity, which Using eq 8, it is possible to show that multiple steady states
corresponds to the irreversible transition shown in Figure 1C. cannot be observed at equilibritinindeed relation 8 cannot

In both models we determine the equilibrium state and show pe satisfied together with condition 9 which ensures the

that it is located outside the region of bistability. existence of three real roots for eq 6:
In a subsequent paper we shall examine a model for which
the two branches of stable steady states cease to be connected. P= q3 +r¢<o 9)

The latter situation, illustrated in Figure 1D, is encountered when
one limit point moves to an inaccessible domain (e.g. negative where
values) of the control parameter while the second limit point

either goes into another domain of inaccessible values or toward q=— 1a2 + lk (9a)
infinity. o 3
Irreversible Transitions of Type 1 in the Schlégl Model r= 2l7a3 - éak+ %b (9b)

Bistability. The model of Schilgl*=357.°provides a simple
prototype for bistability. Its very simplicity allows a detailed The same conclusion can also be reached by expreasisga
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Figure 2. Domain of bistability in the Sclilgi model. The domain b

(hatched area) is obtained as a function of parametensd b using . . . . . . .
the program AUT® applied to eq 6 fork = 1 (parameters are Figure 3. Bistability with or without hysteresis in the Scigbmodel.

expressed in arbitrary concentration and time units). The dashed lineFor & = 2.3, the left limit point becomes inaccessible, giving rise to

indicates the unique equilibrium solution, which lies outside the domain Pistability without hysteresis, with an irreversible transition of type 1.
of bistability. The equilibrium solution corresponds to eq 8. Fora = 1.9 anda = 1.5 the curves correspond, respectively, to
bistability with hysteresis and monostability. The curves are obtained

function ofb andk ilibrium by means of ndf rn by solving numerically the steady-state eq 6 as a functidmfof k =
unction ofb andk at equilibrium by means of eq 8 and factoring 1. On each curve, the equilibrium point (black dot), corresponding to

out the equilibrium solution. Then eq 6 can be written as b = a (see eq 8), lies on the upper branch of steady states.

(X — 9)()(2 +K=0 (10) Studying the zeros of the first de_ri_vative t@(), eqL_JaI to x?
K — 2aX + k, we find that the condition for bistability is

The only physically acceptable solution admitted by this a> 3k (13)
equation, and hence by eq 6, is the equilibrium solution (5).

Irreversible Transitions of Type 1. To show the occurrence  Thus, as a function o, we have monostability if 0< a <
of irreversible transitions in this model, instead of studying the (3k)!2 bistability with reversible transitions (accompanied by
multivalued function yieldingK as a function of parametér it hysteresis) if (R)¥2 < a < (4K)2 and bistability without
is convenient to study the monovalued function hysteresis (irreversible transition of type 1)aif> (4k)2

b=f(X)=X>—aX+ kX=XX*—ax+k (11) Bistability with Irreversible Transition of Type 2
. . Building up a Model with an Infinite Limit Point. We

?Ok;tr?]me.td :;rggs egOGt' a%?ﬁ?”;ﬁ theétr’tr.]g;@gshﬁ atc?tzlynslrgrl?::al now look for a reversible chemical model which, upon variation
as m Itotes obtained Whl dnis ylo\t/te dl as a fgncgon cX are a: of some control parameter, shows a type of irreversible transition

ymp NS p " that is qualitatively different from the one that occurs in the
necessary (but not sufficient) condition for the occurrence of Schitl model. There we observed the shifting of one limit
irr(_av_ersible tran;itions of type 21in Whi.Ch a limit point goes to point into a pHysicaIIy forbidden region of negative values of
|nf|n|t_y_ when X S plotted as a function ob. IrreyerS|bIe the control parameter. The other possibility, to be investigated
transitions of this type are therefore not allowed in the fully below, is that the irreversible transition originates from the
reversible Schilgl model (the effect of considering irreversible o ! - . T

o . shifting of a limit point to infinity.

steps is discussed further below). The polynomial form of We consider, as in the Sclgbmodel, the inverse function
f(X) nevertheless allows the occurrence of irreversible transitions P = h(X) obtain,e d from the ste ady-sta'te equations, wicie
of type 1 in this model. As shown by Figure 1B, such transitions a control parameter of the model (in the present éstjIl
occur when a limit point enters into the region of negative values denote the concentration of a chemical species) ¥rid a
\(/)Jiltjr(l\(l)vthlacg pclnas);?brl]:rt% tlggnrr?éitofh%ag?gzﬂe;tzézlif?ﬁ:S ersteady-state solution. To have a limit point going to infinity,
and lower bFr)anches >t onlv by reversibl c%an in aramet?r) the curve yieldingP as a function ofX must have at least two
b. To observe this situatign t)r/1e functitﬁ(g() has%o grgss three vertical asymptotes for positixévalues. Thusi(X)must be a
o - I rational function with at least two vertical asymptotes in the
times the positive part of th¥-axis; i.e.,f(X) must have three regionX > 0. Writing h(X) in the form
nonnegative solutions fdo = 0. We can readily obtain the 9 ' 9
conditions in which such a situation occurs in eq 11. Indeed, P = h(X) = f(X)/g(X) (14)

one solution is alwayX = 0, and the other two solutions are
we see thaig(X) must have at least two positive roots (the

[2 _ situation of a single positive root aj(X) must be avoided,;
= M (12) indeed,h(X) would have a unigue vertical asymptote in which
2 it would also change sign, a®Rlwould be positive on one side
of the asymptote and negative on the other side). The evolution
equation yielding expression 14 at steady state will be

X

The latter solutions are real provided treat- (4k)2, and
are then always positive. Thus if the conditiare (4k)Y2 is
fulfilled, we have an irreversible transition of type 1. This dx/dt = Pg(X) — f(X) (15)
occurs in Figure 3, established for= 1, whena = 2.

Observing bistability as a function bfimplies the existence  To have at least two strictly positive root;X) must be at least
of both a maximum and a minimum im as a function ofX. of the second order iK. The simplest assumption is to consider
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that P is involved as a catalyst in a trimolecular, autocatalytic ~ The full rate equation becomes
step producing X:

dx/dt = P(—k_; X2 + kAXE — kX + k_,B) — kX + k_,C

kl
A+P+X<E2X+P (16) (25)
To avoid having a trivial solution ok, we need also to assume andh(X) is
that P is involved in the transformation of X into another
substance B: kX — k_5C
P= 3 > (26)
K —k_ X*+ KAX — kX + k_,B
P+ X - P+B a7)
We could carry on the detailed analysis of the model for the
The corresponding rate equation for X will be above mechanism including a tetramolecular step. For reasons
of chemical plausibility, however, we prefer to demonstrate
dx/dt = —k_1X2P+ k,APX — K,PX+ k_,PB — f(X) = irreversible transitions of type 2 when we decompose the

guadrimolecular step into a trimolecular step plus a bimolecular
reaction and introduce to this end a second variableWe

) will show in the following that in this way we retain the required
Therefore, in eq 15, analytic form forh(X) at steady state.

The total reaction scheme for the model therefore is

P(—k_ X2 + (kA — k)X + Kk_,B) — f(X) (18)

g(X) = —k_ X+ (kA — k)X + k_,B (19)

kl

A rapid examination ofg(X) leads to the conclusion that it P+X fz

cannot admit two positive solutions, according to the rule of

Descartes for the coefficients: the termXa will always be k,

negative and the zero-order term is always positive, so that Z=—=P+B

g(X) admits at most a single positive real root.

Thereforeg(X) must be a polynomial of at least order 3, and §

this means that, with only one concentration variakléwe Z+A+X—=7+2X

assume that the system is open in such a manner that all other ks

concentrationg\, P, andB are kept constant), the autocatalytic

reaction must be quadrimolecular: X R C 27)
K-
kl
A+ P+2X T P+3X (20) The variables arX andZ; A, B, C, andP are concentrations

which are controllable parameters. P can be thought of as an
P+X%P+ B (1) enzyme which transforms X into B, vi_a the formation of
2 complex Z; the latter, when complexed with a second molecule
] o of X, can transform A into X.
The corresponding rate equation is For convenience, we shall refer to this model in the following
as theinfinite limit point (ILP) model, even if under different
dX/dt = P(—k_, X + k,AX® — kX + k_,B) — f(X) (22) conditions it can also admit irreversible transitions of type 1,
as shown further below.
In this caseg(X) is a third-order polynomial irX: Kinetic Equations. The rate equations governing the time
evolution of the concentration variables in the model corre-
g(X) = —kflx3 + klez — kX +k_,B (23) sponding to reactions 27 are

According to the rule of Descartes, this polynomial has either dX/dt = —k,XP + k_,Z + keZAX — k_X*Z — kX + k_,C
one or three real positive roots. Thuel) given by eq 14 either

has only one asymptote or three vertical asymptotes. In the dz/dt = kXP — (k_; + k))Z+ k_,PB (28)
first case, the system has either one stable steady state, or two

stable steady states with hysteresis. In the second case, tht equilibrium we have the following relations between the

multiplicity of vertical asymptotes gives rise to bistability with  concentrations and the kinetic constants:
irreversible transitions of type 2.

To have the full expression fdr(X) we still need to define K_aK_, K_ 1k K s
its numeratorf(X). Becausegy(X)—and hence the steady-state A= KK .
equation forX—is already of the third degree X, which is a 3™ 17273

necessary condition for bistability, the degreef@{) is not

crucial for the occurrence of bistability or irreversible transitions. _ kikg

As seen from eq 15(X) is a polynomial which is at least of = k_,K_5 PA

first order inX and corresponds to reactions in which P is not

involved. We choose the simplest case of a unimolecular K

reaction: X=—"A (29)
K.g

k3
X = C (24) To simplify the analytical treatment, it is useful to rescale the
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concentrations and time:

X=%x, Z=klk%:z, A=%a, B=ki_42b,
2
C=%c, Pzt—‘l‘p, t=%41 (30)
The system of eq 28 takes the form
dx/dr = —xp+ z+ zax— C;xXz— x+¢C
dz/dr = (xp— C,z+ pb)C, (32)
where
k,°K_5 Ky k_,
C1=k12—h, C2=[1+1, C3=k_4

The equilibrium relations (29) thus take the form

C, _ _
—1b, C,z=pa a=Cyx

a=C1C=C2

(32)

To obtain the steady-state solutions of system (31) we have

to solve the following equations:

_ p(x+b)
z——C2
Cb—-a C,—1)+C,—pab cC+pb
3 X2+p(2 ) sz_szo
C, pC, pC,

(33)

These equations are obviously satisfied at equilibrium where

relations 32 hold. Expressing and ¢ as a function ofb
according to eq 32 and factoring out the equilibrium solution,
we rewrite eq 33 as:

=

SinceC; is always larger than unity, as shown by eq 31, we

p(C, - 1)+ G, _
Cip

X% + bx + 0 (34)

see that at equilibrium the system does not admit any other
physically acceptable steady state. The phenomenon of bista-

bility demonstrated below therefore occurs only far from
thermodynamic equilibrium.

Irreversible Transitions of Type 2. For simplicity we
consider, without loss of generality, the case where all kinetic
constants are equal to unity. Th€a= 1 andC, = 2 and the
steady-state equations (33) become

z=p(x + b)/2 (35)

p+2—pabx
p

_2ct+pb_

3 — =
X+ (b — a)yé + .

0 (36)

As a function ofa andb, for different values op, the region
of bistability I'(p,c) is determined by the conditions ensuring
the existence of three real positive roots to eq 36:

p+2

ob al+r2<0

b<ac<

37)
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Figure 4. Domain of bistability in the infinite limit point (ILP) model.
The domain (white region) was determined as a function of parameters
a andb, for three values of, using the program AUT® applied to

eq 36. Parameter is equal to 2. In this and subsequent figures, all
parameters and variables are dimensionless.

0.12 0.14

whereq; andr; are given by the expressions

_ 1y _ ey lpt2-pab
_1(b-ap+2—-pah 12c+pb 1, 5
176 P LR Chal)
The domain of bistability is shown in Figure 4 for different
values ofp.

To determine the conditions in which bistability is ac-
companied by irreversible transitions of type 2, we expmess
as a function of:

_ 2(x—1c)

—x+(@—-bx*—(1—abx+b

p (38)

This function will have three vertical asymptotes if its third-
degree denominator has three positive real roots. This will occur
when

b<a<1hb, g°+r,°<0 (39)
where

L1y 11

q,= 9(b a)+3 3ab

r,=glb—a)(1—ab) + 3 — (b — a)’

The two conditions 39 are satisfied in the region shown in Figure
5 as a function of andb. In this domain (referred to below
as Tl) we have irreversible transitions of type 2. This region is
included as a subset in the union of all the regidifs,c) of
bistability (see Figure 4) obtained under the variatiomp ahd

Tl c UT(p,c)
p.c

Furthermore, it can be proved that

Tl = lim I'(p,c)
pﬁoo

Indeed, conditions 37 become, in the limitpf> «, equivalent
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38 (the existence of three such asymptotes ensures the existence of an ©°5 0 05 115 2 05 0 2

b d, de dr ‘;2 dr
Figure 5. Domain of existence of three vertical asymptotes for function -100 \ J . . -100 b
infinite limit point). The domain was determined as a function of *

parameters andb using conditions 39. Figure 7. Different cases illustrating how functigngiven by eq 38
varies as a function of, depending on the value of parameteelative
— T T T T T T to the three rootd, d,, andds; of the denominator of the same function.
10 a=8 . The value ofcis 1.8, 0.8, 0.3, and 0.06 for panels A to D, respectively.
b ] Moreover,a = 1.9 andb = 0.08. The corresponding modes of
4 | irreversible transition of type 2 are shown in Figure 8.
2 ——— T 2 T T T T T
A B
™ 1
'O‘ 1.5 c=1.8 4 15} c=0.8 4
uN
o o 1L i 1
0.1 F 05 | J 0.5 L--mmommmrmmITIm I 3
0 L 0 L " | | I
0 100 200 300 0 100 200 300
0 0.05 0.1 0.15 0.2 c D
b 15| c=0.3 1 15} ¢=0.06 {
Figure 6. Roots of the denominator of function 38 determined as a
function of parameters. and b by means of the program AUTO o ] al 1
applied to the denominator of eq 38. Each root corresponds to a vertical * [ ( ﬁ—
asymptote for function 38. The existence of three vertical asymptotes N S
ensures the occurrence of an irreversible transition of type 2. 05p T 1 osp T 1
to conditions 39: 0 P o —
0 100 200 300 0 100 200 300
|im&2 _1 P P
p—o pb b Figure 8. Different modes of irreversible transition of type 2 in the
ILP model. The diagrams show the steady-state levelasf a function
|im(q13+ I’lz) = (q23 + r22) (40) of parameterp in the different cases illustrated in Figure 7. The
p—eo equilibrium state cannot be reached here since conditions 32 cannot

) . be satisfied, given tha = b.
Therefore, forp — o, the fulfillment of conditions 37 for

the existence of bistability ensures that the phenomenon isthis figure are the casels < ¢ (Figure 7A),d; < ¢ < d; (Figure
associated with an irreversible transition of type 2. 7B), d1 < ¢ < d; (Figure 7C),c < d; (Figure 7D). In Figure
To further visualize the region of bistability with irreversible 8A—D, we show the corresponding variation of the steady-state
transitions of type 2, we show in Figure 6 the root(s) denoted concentration ok (denotedxs) as a function ofp. The four
d (i = 1—3) of the third-degree denominator of eq 38 as a cases considered illustrate the different sorts of irreversible
function of b for different values ofa. The system admits  transition of type 2 observed in this system.
irreversible transitions when three solutions are present for a By decreasing continuously from a sufficiently large initial
given value ofb. This occurs wherb is less than a critical  value, we pass through the intermediate situations in which
value (see Figure 6 fa > 2) or comprised in a range bounded becomes equal to one of the three rodisd,, andd;. The
by two critical values (see for example the curve o+ 1.8). bifurcation diagrams which correspond to these special situations
Depending on the value of parametenelative to the values  are shown in Figure 9AC. Particularly interesting is the case
of the three rootsd;, d,, ds) of the denominator of eq 38, we  shown in Figure 9B forc = dy; this case corresponds to a
obtain different possible shapes pfas a function ofx, as pitchfork bifurcation. Therefore, the situations intermediate
illustrated in Figure 7A-D in which d; = 0.126,d, = 0.559, between those shown in Figures 8, B and C, can be seen as
d; = 1.135 fora = 1.9 andb = 0.08. Shown successively in  perturbations of the pitchfork bifurcation, in terms of the
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Figure 9. Steady-state level ofas a function op whenc is equal to
one of the three rootsl{, d;, ds) of the denominator of function 38.
The case shown in (B) corresponds to a pitchfork bifurcation. The
situation considered is that of Figure 7.

parametek = ¢ — d,. This is illustrated in Figure 10 where
the pitchfork bifurcation obtained far = 0 is shown (Figure
10B), together with the bifurcation diagrams obtained for slightly
positive (Figure 10A) or negative (Figure 10C) values of
Transitions between Monostability and Different Modes
of Bistability. So far we have studied the behavior of the model
as a function of parameter for values ofa andb such that
function p(x) given by eq 38 admits three vertical asymptotes.
This situation corresponds to bistability without hysteresis, with
an irreversible transition of type 2. It is possible to vary one
parameter of the model (e.gor b) to pass from such a situation
to a situation in which the denominator pfx) in eq 38 admits
a single positive real root, which corresponds to monostability,
or bistability with hysteresis. Such transitions are illustrated
in Figure 11A-D (established foa = 1.9 andc = 1.2) where,
in agreement with the results of Figure 6 (see curveafer
1.9) on the number of roots of the denominatorpgx) in eq
38, we successively observe as a functiorb ehonostability,
bistability with hysteresis, bistability without hysteresis, and
monostability again as parameteis increased progressively.
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Figure 10. Perturbation of the pitchfork bifurcation obtained for=
dz (B), whenc is slightly larger (A) or less (C) thad,. The situation
is that of Figure 7.

as they depend also on the values of parametensdc. For
the valuea = 4, for example, the denominator of eq 38 has
three real positive roots for sufficiently small valuestnfin
contrast to the situation observed fo+= 1.9 for which a single
root exists at low values df (see Figure 6): fom = 4, upon
increasingb, we start from situation of Figure 11C (bistability
with irreversible transition of type 2) and can only pass to the
situation of Figure 11D (monostability), but we cannot have
bistability with hysteresis, which can occur for= 1.9 as shown

in Figure 11B.

The influence of parameter has been discussed above for
values ofa andb such thap(x) admits three vertical asymptotes
(see Figures #9). For other values of the latter parameters,
the value ofc will affect the possibility to pass from bistability
with hysteresis to monostability. Thus far= 2, it can be
shown that the system cannot pass from bistability with
hysteresis as in Figure 11B to monostability as in Figure 11A
as a function ofp by lowering b: the system can show
monostability over the whole range pfvalues only for high
values ofb.

Irreversible Transitions of Type 1 in the ILP Model. So

The successive transformations of the bifurcation diagram far we have investigated the occurrence of bistability with

as a function ob shown in Figure 11 are not general, however,

irreversible transitions of type 2 in the infinite limit point model.
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Figure 11. Steady-state level of as a function of parametgrin the
ILP model for increasing values &f The diagrams show the passage
from monostability (A) to bistability with (B) or without (C) hysteresis,
and finally to monostability (D). The situation in C corresponds to an
irreversible transition of type 2. Parameter valuesearel.9,c = 1.2.

Irreversible transitions of type 1 can also occur in this model,
when the lower limit value of a control parameter goes into an
inaccessible domain of negative values.

To observe irreversible transitions of this type as a function
of parametep would require that three real positive values of

Guidi and Goldbeter

Figure 12. Bistability with or without hysteresis in the ILP model, as

a function of parametds. An irreversible transition of type 1 is shown

for a = 2. Parameter values ace= 2, p = 100. The equilibrium state

for a = 2 corresponds tb = 2 since at equilibriuma = b =c = x

(see eqgs 32); thus the equilibrium point (shown by a black dot in the
inset) lies on the upper branch of steady states on this curve. The
equilibrium state cannot be shown far= 1.9 sincea = c.

1.6 ——

I ’ 1 N I

x correspond to the valye= 0 in eq 38 forp(x). We see from > 0.8 Fry .
that equation that this is never possible, because a single positive RN
value & = c) corresponds tp = 0. Irreversible transitions of I AN el
type 1 can nevertheless occur as a function of other parameters 04 L \‘ i
of the model. To see this, let us express, andc as a function : ! v
of x at steady state, from eq 36: %

pxC + pb¥ + (p + 2)x — (pb+ 2c) () = S E——

a= (41a) 0 2 4 6 8 10
p(¢ + xb)
c
an — pax2 +(p+2x—2c Figure 13. Bistability with or without hysteresis in the ILP model, as
b= (41b) a function of parametar. The curve forp = 100 shows an irreversible
p(—X2 +ax+1) transition of type 1. Parameter values are 2, b = 0.02. In contrast
to the situation in Figure 12, the equilibrium point cannot be shown

c= [ng + p(b — a)XZ + (p+ 2 — pabx — ph]/2 (41c) here sincea = b (see legend to Figure 12).

Again, to observe the phenomenon as a function of one of the reverse kinetic constants are taken equal to zero. In the
these three parameters we need to obtain three real positive rootSchiayl model, irreversible transitions of type 1 disappear when
of x when the corresponding parameter becomes nil. Applica- k-1 = 0 since the right-hand part of eq 2 is then only of the

tion of the rule of Descartes shows that this will never be
possible as a function of parameter In contrast, the possibility
of an irreversible transition of type 1 exists as a function of
both parameterd and c. The occurrence of irreversible
transitions with a negative limit point is illustrated as a function
of b andc in Figures12 and 13, respectively. The position of
the left limit point in Figure 12 can be brought from negative
to positive values by changing paramedgwhile a similar effect
can be brought about by variation of parametén Figure 13.

It is not possible to combine in this model the two types of
irreversible transition. Equations 41d1c show indeed that
none of the curves yielding or b or ¢ as a function ok can
admit three distinct asymptotes.

Effect of Irreversible Chemical Steps. Having analyzed

second degree. When., = 0, the irreversible transition of
type 1 is not observed. The lower steady state is then always
null and the right limit point goes to infinity as a function of
parameten which depends ok-; (see eqgs 6 and 7). Thus, for
this particular value ok-,, the middle (unstable) steady-state
tends toward the lower, null steady stateadacreases, giving
rise to a particular transition of type 2.

In the ILP model, examination of eq 28 shows that in order
to have the possibility of bistable behavior, it is necessary that
k-3 be different from zero: otherwise the resulting steady-state
equation forX will be of the second order. Thus when all the
chemical steps are irreversible, the model does not retain the
nonlinearities in the kinetic equations necessary to display
bistability. If all the reverse kinetic constants, exckpj, are

the occurrence of irreversible transitions in the two models when null, we can observe bistability and irreversible transitions of
all the chemical steps are reversible, the question arises as tdype 2, but one of the stable steady-state solutions is always
what the behavior of the systems becomes when all or part of zero (here, in contrast to what is observed for the Sghtwdel,
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the middle branch of steady states possesses an asymptote whiatomplex containing X, which is also involved in the trimolecular

differs from the abscissa axis). In fact, we have the same
situation if onlyk_; andk_4, or k-, andk_, are equal to zero
with k-3 = 0. In all the other cases we have bistability and
irreversible transitions of type 2 with all the steady-state
solutions different from zero.

For the occurrence of irreversible transitions of type 1, it is
again required thak_3 be different from zero, for the same
reasons explained above. Moreover, the parambters will
be present in the kinetic eqs 2&if, andk_4 are different from
zero, respectively. Whek-, andk_3 are different from zero,
the ILP model still exhibits, as a function d&f irreversible
transitions of type 1, but one steady state solution is always
nil. When k_4 and k_3 are different from zero, we have
irreversible transitions of type 1 as a function @fwith the
low branch of steady-state passing through 0 inc = 0.

Discussion

Bistability is often associated with the capability of a system
to switch back and forth between two distinct branches of stable
steady states upon the reversible variation of a control paramete

step. The coupling of these two processes further reinforces
the global autocatalytic nature of this system. We showed that
in this model one of the two limit points can go to infinity. The
other type of irreversible transition due to the passage of a limit
point into a range of finite but inaccessible values can also be
observed. Thus this model can display a wide range of behavior,
including monostability, bistability with hysteresis, and bista-
bility without hysteresis due to the occurrence of an irreversible
transition of either type 1 or 2.

In both models thermodynamic equilibrium corresponds to a
point located outside the domain of bistability. Thus the
phenomenon of irreversible transitions is possible in fully
reversible chemical systems, under nonequilibrium conditions.
The question arises as to how the system can evolve to
equilibrium if it starts from a branch of steady states (apparently)
separated from the branch containing the equilibrium state by
the absence of a limit point that would allow the transition
between the two branches as a function of a control parameter.
In other words, the equilibrium state should be connected to
any steady state by continuously varying the control para-

meter(s). When the equilibrium and steady-state branches are

in a range bounded by two limit points.  Hysteresis results from disconnected due to an irreversible transition of type 1 or 2,

the fact that the values of the control parameter at which the . - ) o
transitions occur, which correspond to the two limit points, are such a continuous passage requires the concomitant variation
different. Here we focused on the situations in which one of of more than one control parameter. ) )

the limit points becomes inaccessible to the system. In such TO our knowledge, the present study is the first to address
cases, the system is capable of jumping from one branch ofthe occurrence of irreversible transitions in fully reversible
steady states to the other, without being able to undergo thechemical reaction models. This allows us not only to determine
reverse transition. The unigue transition between the two the location of the equilibrium state with respect to the range
branches of stable steady states has thus become irrevéfsible. in which such transitions occur, but it also permits us to
Such a phenomenon could be of importance for the control of determine the effect of the reverse reactions on the occurrence
chemical reactors as well as for the dynamics of biological Of the phenomenon. As indicated in the preceding section,
systems (see below). Several models showing such irreversibleneglecting some of the reverse steps in the two models
transitions have been propos€d2® but the kinetics of these ~ Suppresses the irreversible transitions, while neglecting some
systems is of a nonpolynomial nature and is based on the other reverse steps _has no effect in this _regard. The present
assumption of irreversible chemical steps. Therefore, the Study appears to validate the results obtained in models based
question arises as to whether irreversible transitions may occuron partially irreversible kinetic schemés?’ We have not

in chemical systems consisting of a sequence of fully reversible investigated whether the quasi-steady-state hypotheses which
steps described by polynomial kinetics. were often made in these studies to reduce the number of

In order to clarify the conditions in which irreversible Variables influence the occurrence of irreversible transitions. The
transitions occur when one of the limit points of a bistable fact that the phenomenon is obtained here in the absence of

chemical system disappears, we have examined two theoreticafuch hypot.hes.es neyertheless indicates that it is probably not a
models admitting a coexistence between two stable steady stated€Sult of this simplying procedure.
The two models are based on a sequence of reversible chemical Irreversible transitions between multiple steady states are not
reactions. This analysis leads us to suggest a classification oflimited to chemical reaction systems. Thus an “incomplete
ireversible transitions between two types, depending on whetherhysteresis phenomenon” associated with an irreversible transition
a limit point goes into a region of finite values not accessible of type 2 corresponding to an infinite limit point has been
to the system (irreversible transition of type 1) or to infinity described in a two-parameter, one-dimensional map obtained
(irreversible transition of type 2). In the first model, proposed from a nonlinear model proposed for an optical bistable de¥ice.
by Schigl,'~35we showed that irreversible transitions of type To demonstrate experimentally irreversible transitions of type
1 but not of type 2 are possible. In the second model, 1 as a function of a particular control parametea transition
constructed to illustrate the phenomenon and referred to as ILPfrom one branch of steady state to another branch should first
(infinite limit point) model, irreversible transitions of type 2 pe demonstrated when the valuejoéxceeds (goes below) a
but also of type 1 are obtained. critical value. Then, the value of should be decreased
To display an irreversible transition of type 1, the model of (increased). If the system returns to the original branch of steady
Schlal, which contains two steps, including an autocatalytic states at a different critical value df a hysteresis cycle is
trimolecular one, was not modified. This model was previously obtained (see Figure 1A). However, if the value of the control
studied for bistability associated with hysteresis. We showed parameter cannot be changed any further for some physical
here that bistability without hysteresis can occur in this model reason (for example, positivity of rate constants or chemical
and obtained the conditions on the parameters for which oneconcentrations) before the transition has occurred, then the
of the limit points goes into a region of negative values system is blocked in that branch of steady states and an
corresponding to a physically inaccessible range of the control irreversible transition of type 1 is demonstrated (Figure 1B).
parameters. However, the original state can be recovered by changing the
The second model is made up of four steps. It also containsvalue of some other control parameter of the system or by
a trimolecular step for the autocatalytic production of an applying a suprathreshold perturbation in the concentration of
intermediate X, as well as the formation of a bimolecular a chemical intermediate (e.g. the addition of a certain amount
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